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Analytic properties of the linear Vlasov response function for guiding-center particle motion 
in low frequency flute modes are investigated for a two-temperature Maxwell-Boltzmann 
plasma. Algorithms are given for evaluating the family of analytic functions G,,,(o) along 
with the software implementing the methods and user documentation on MFE tiles. 

I. PLASMA PHYSICS ORIGIN OF GUIDING-CENTER 
DISPERSION FUNCTION (GCDF) 

In this work we develop the properties of the family of special analytic functions 
that measure the linear response of the strongly magnetized, non-uniform collisionless 
plasma. The special functions occur in the conductivity tensor and charge density 
susceptibility required in theories of plasma waves, instabilities, and transport. 

The typical problem in which the special functions occur is to find the response 
Ax, v, t) in the particle distribution function to the electromagnetic perturbations 
g(x) exp( - iwt) and B(x) exp(-iot) given the background equilibrium distribution 
function I;(x, v). The equation for the responseflx, v) exp(-iwt) is 

where q and m are the mass and charge of the particles in the distribution F(x, v). 
The first order linear partial differential equation for fix, v) is solved by integrating 
the source term on the right-hand side over the unperturbed particle trajectories X = v 
and i = v X Q(x) where n = qB/mc. The particle trajectories are the well-known 
helical cyclotron orbits with radius p = v,/Q and frequency a about the guiding- 
center drift velocity vg. 

In general, the trajectories are 

x(t) = x0 + (q 6 + vD)t + 2 [GI sin([ - at) + eAz cos(c - Qt)] 

v(t) = ulb + vD + uJe^, cos([ - at) + 2, sin([ - Of)] 
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where the drift velocity is given by 

VD = 
v2,6 X V In B(x) 

2l2 

+ vf6X (6. V)6 
R 

with 6(x) = B(x)/B(x) and B(x) = 1 B(x)]. 
The complete theory of the inversion of the convective derivative for fix, v) using 

the trajectories requires a complicated analysis whose details depend on the type of 
waves (high frequency w % Q or low frequency w 4 L?) and the geometry (tokamak, 
mirror, or bumpy torus) of the system. The analysis, for example, is given in Ref. [ 1 ] 
for high frequency electrostatic modes and in Ref. [2] for low frequency elec- 
tromagnetic modes. 

1. GUIDING-CENTER PROPAGATOR 

For a particle of velocity v interacting with a fluctuation kw the linear response of 
the Vlasov equation is determined by the wave-particle propagator 

g&v) = lim 
1 

E-+o+ w-nR-k,,u,,--kl.vD+ie 

where the limit E -+ O+ arises from the condition of causality in the response to the 
perturbation varying as exp(-iwt). The average response R, of the system to a 
velocity distribution of particles F(v) is given by 

R, = J dv F(v) aa,,(v) = (gdv)>F, 

where 1 dv F(v) = 1. 
The special function measuring the response for k,,v, + k,v, is the well-known 

Fried-Conte [3] plasma dispersion function 

where v,. = (2T/m)“* is the thermal velocity of the Maxwell-Boltzmann velocity 
distribution. 

In general, for strongly magnetized plasmas, the most important perturbations for 
waves and instabilities have k,v, > kept. Such perturbations and waves are called 
flute modes (k,, = 0) and flute-like modes (k,,vr < k,v,) and are of special importance 
in the dynamics of plasmas. This fact leads to the definition of the guiding-center 
response function [4] 

RGCDE _ 
k1.w - 
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and the homogeneous function G(o) = OR,,,,, whose properties are developed in 
Sections II and III. 

2. TWO-TEMPERATURE MAXWELL-B• LTZMANN AVERAGE 

Recent studies of plasmas containing hot electron components such as the bumpy 
torus and tandem mirror end cell plasmas require the guiding-center dispersion for 
highly anisotropic velocity distributions [5]. To take into account the anisotropy the 
dimensionless drift frequencies ~0~ and w, are defined by 

mu: 

wD=og 277, 
mvf 

-+W,---- 

Tit 

where 

cT,6x VB w,=k.-- 
eB B 

w,=k.s& (6. v)6 

where Tl = (fmu:) and T,, = (mv~). The simple response function for the two- 
temperature Maxwell-Boltzmann velocity distribution P,(v,, v,,) is then 

RGC klw 
1 

,=711/2 1 I adx * 
0 

o dyy-“’ 

for Im(w) > 0. 

Taking into account the finite-Larmor radius (FLR) effects gives the generalized 
response function 

i 

(mv~2Tl)m-‘(mv~/2T,l)“-1J~(klvJR) F 

0 - ~,(~~*JW - w&+/T,,) 
M 

(v 
17 

v,,) dv 

la O” “-‘y”-‘Ji(kfi) 
=n’/2 s i dx o dyy- ‘I2 exp(-x - y) x 

0 co-o&x-220,y 

where k = k,(T,/m)1’2/f2. The further generalizations required for the elec- 
tromagnetic 3 X 3 dispersion relation are given in Section IV(7). 

For m = n = 1 the primary FLR response function is defined by 

GFLR(u, a, b, k) = w 
i I 

wdx m dy y-l’* exp(-x - y) Ji(k\/2x) 
*l/2 

0 0 w-ax-by’ 
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For small k the FLR velocity space moments may be expanded in powers of (k’x)’ 
and expressed in terms of G,+,,,(o), defined below. 

The primary response function G(o, a, b) = G,,, is related to the 
Maxwell-Boltzmann averaged propagator by 

w a, 
-i-D- I I dx O”dyy 

-“* exp(-x - y) 

X’ 0 0 w-Wogx-2C0Cy 

= G,,,(w og, 20,) = G(o, wg, 24. 

The generalized dispersion function is related to the Maxwell-Boltzmann average 
by 

Jo* u du exp(-u2/2) i” dv ex$~$!2) w _ +,,z2 _ w u2 (u2/2)“-‘(v2/2)“-’ 
-co c 

= Dm,nGm,n(w wg, 2~4 for Im(w) > 0 

where 

D !?I,” = 
l-(m) r@z - j) 

r(4) 
with D,., = 1. 

II. MATHEMATICAL PROPERTIES OF THE GUIDING-CENTER 
DISPERSION FUNCTION 

1.1 Definition 

1. Dejinitions and Properties 

The generalized guiding-center dispersion function G,,,(w, a, b) is defined for real 
a, 6, integer m, n, and complex w by 

Gm.n(co, a, b) = -iw 
i 

O” dt exp[iot](l + iat)-“‘(1 + ibt)-“+“2 (1.1.1) 
0 

for Im(w) > 0, and the analytic continuation for other w. The determination of 
(1 + ibt)“* is chosen such that its real part is positive. The function G,,,(w, a, b) has 
a branch point at w = 0 with the branch line taken from w = 0 to -ioo. 

1.2. Primary Response Function 

The fundamental guiding-center response function G(o, a, b) occurs for m = n = 1: 

G(w, a, b) = G,,,(w a, b). (1.2.1) 
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1.3. Alternate Integral Formula 

G,,n(w,a.b)=lG:dse-” (1 -f--” (I -:I 
-n+ I/2 

(1.3.1) 
0 

for Im(w) > 0 and Re(1 - ~s/(u)“~ > 0. 

1.4. Homogeneity, Symmetry, and Large w Limit 

Homogeneity. If r is real and positive, r > 0, then 

G,,,,(w ra, rb) = G,,,(w, a, b). 

Symmetry. For all w 

Gnz,n(--w *, -a, -b) = G&(o, a, b). 

Limit for Large 1 w I. For a and b fixed and I+ 00 

G,,,(w, a, b) -, 1, if arg w # -7c/2 (mod 27~). 

(1.4.1) 

(1.4.2) 

(1.4.3) 

2. Recursion Relations and Dtflerential Properties 

a aG,,,,,,(w, a, b) 
aw = 

b WAw, a9 b) 
aw = 

G,,,(w, a, b) + G,- I,n(w, a, b) 

G,,,(w, a, b) + G,,,- dw, a, b) 

(2.1) 

(2.2) 

(a - b) Gm,,,(w a, b) = aGm,n-I(w, a, b) - bG,- ,,,,(w, a, b) (2.3) 

(2.4) G m,n= 1 +FGmtL” m,n+ I 

G ,,,,,,= 1 + m+n-+ $G,+,,,-- m+ I,n+ I (2.5) 

G =l+ m(a - 4 
m,n 

G 
W 

m+1.n+1 (2.6) 

G,,,(w, a, b) = 1 - $ Go,, (w, a, b) (2.7) 

(2.8) 

(2.9) 

aG,,Jw, a, b) 
aa 

= - t G,,,Jw, a, b) + t G,, I,n(w, a, 6) 

aG,,,(w, a, b) 
ab = 

-~G,,Jw,a,b)+~G~,“+,(w,a,b) 
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a %,,h Q, b) + b Wn,n(w a, b) + w Wn,n(~ a, b) = o 
aa ab au * 

(2.10) 

3. Analytic Continuation for Im(w) < 0 

G&o, a, b) is analytic for Im(o) > 0, but when extended into Im(w) < 0 it is 
necessary to introduce the branch cut from w = 0. The cut can be arbitrarily placed 
in the Im(o) < 0 plane. Unless otherwise specified we define the cut by wb = -it with 
o<t<cQ. 

3.1. Analytic Continuation from Integral Representation 

For integral representation (1.3.1) the analytic continuation is given by the contour 
integral 

G,,,(w,~,b)={~dse-” (1 -E)Vm (1 _$)~““‘* (3.1.1) 

with the contour C going, if necessary, below the singular point s, = w/a and branch 
point s2 = o/b from s = 0 to s = +co as shown in Fig. 1. 

3.2. Analytic Continuation from Difleerential Equation 

The differential relations (2. l), (2.2), and (2.7) are a closed set of differential 
equations of the Fuchsian type with o = 0 a regular singular point. 

Analytic continuation and computations are made using the definition (1.3.1) for 
initial data o0 with Im(o,,) > 0 and integrating (2.1) (2.2), and (2.7) to o with 
Im(w) < 0, along path P shown in Fig. 2. 

For example, the value of G(o, a, b) is found from 

YI = G,,,Gx a, b) 
y2 = Go,, (QA a, b) 

Re (s) 

(3.2.1) 

(3.2.2) 

FIG. 1. Integration contour C (Section II(3.1)). 
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FIG. 2. Path P (Section II(3.2)). 

(3.2.3) 

(3.2.4) 

with initial data q, = o + iu evaluated using the integral (1.3.1) definition. 

4. Integral Solutions of Differential Equations 

4.1. Definitions ofK,(a, b) and K,(a, b) 

For a # 0, b # 0 and complex w (with positive or negative imaginary parts) the 
solutions of (3.2.3) and (3.2.4) are 

y,(o)=Texp c-x),f: dtexp cTt2] +K,w’/‘exp C-T) (4.1.2) 

where 

(4.1.3) 

and (e” - 1)/a is analytic in t. The constants K, and K, are determined by iden- 
tifying the asymptotic behavior of y,(o) and y2(w) with the integral representation of 
G,,, and Go,,, for w-+0: 
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FIG. 3. Regions in the (a, b) parameter space (Section II(4.1)). 

Y,(W) - 4~ (4.1.4) 

y2(w) - K, cu”*. (4.1.5) 

The values of K, and K, are given for the regions I-VI of the u-b plane defined in 
Fig. 3. 

DEFINITION OF K, (a, b) 

b > 0, Regions I, II, III 

K, = 4(x/b)“*. 

b < 0, Regions IV, V, VI 

K, = @c/16()“*. 

DEFINITION OF K,(a, b) 

1 > b/a > 0, Regions I, IV 

K, = 
1 

a( 1 - b/u)“2 
ln 1 - (1 - b/u) 1’2 

1 + (1 - b/a)“’ 

b/a > 1, 

b/a < 0, 

Regions II, V 

K 2 arctan(b/a 1)“2 - 
2 

= _ 
a(b/a - 1)“’ 

Regions III, VI 

1 
K2= (1 + lb/al)“* - I 

b = a, 

K, = -2/a. 

(4.1.6) 

(4.1.7) 

(4.1.8) 

(4.1.9) 

(4.1.10) 

(4.1.11) 
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4.2. Small-Argument Limit 

For 1 w 1 < ) a 1, 1 b I the integral solutions of the differential equations give the small- 
argument expansions 

L 
2 3 

G(w,a,b)-K,(a,b) c~-%+s-+*** 
I 

+ K,(a, b) 2 w3’2 
a 

-L&+2) d/2+ . ..I 

+&&!$ ;++ &+ . . . ( 1 
+ O(d2) 

G,,,(w, a, b) - K,(a, b) CO”’ - $ w3/2 
1 512 +px +-*a 

I 
2 + L +e-++g+ . . . I 

+ o(w7’2). 

(4.2.1) 

(4.2.2) 

4.3. Imaginary Part of G(w, a, b) for real o 

Assume real, positive cu. For real w < 0 use the symmetry G(-w, a, b) = 
G*(o, -a,-b), Eq. (1.4.2). One has 

Im G(w, a, b) = ---~(271)-“~ i_‘I dv exp(-v2/2)10a u C&J exp(-u2/2) 

(4.3.1) 

where 6(x) is the Dirac delta function. 
The Im G(o, a, b) occurs from the resonance on the ellipse or hyperbola in the U, v 
plane. 

Im G(o, a, b) = -(2a)“2 -% exp 
I4 

x joa du exp(-v2(a - b)/2a) H ( w --fibv2’2 ) (4.3.2) 

where H(x) is the Heaviside step function. 
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a > 0, b > 0; Regions I, II 

Im G(w, a, b) = -(27c)‘/’ t exp (- t) (F) I’* I1 dt 
0 

X exp 
m(b - a) t’ 

ab 

a > 0, b < 0; Region VI 

Im G(o, a, b) = -X (+ i-$ii+J”* 

a < 0, b > 0; Region III 

Im G(w, a, b) = -(271)‘/* -% 
JaJ exp i;) (f) I’* ,pdf 

x exp ( - 44 + b) t2 

IO 1 

269 

(4.3.3) 

(4.3.4) 

(4.3.5) 

a < 0, b < 0; 

a = 0, b > 0; 

Regions IV, V 

Im G(w, a, b) = 0 (4.3.6) 

Im G(o, a, b) = -XI/~ (F)“‘exp (-F)’ 

b=O, a > 0; 

ImG(w,a,b)=-2ntexp -t . 
c 1 

(4.3.7) 

(4.3.8) 

5. Relations between the Function Values in the Upper and Lower w Half-Plane 

If Im(o) > 0 and w = reie with 0 < 9 < n, so that w* = reeie and w’/* = r’/2eie/2, 
then from the solutions of the equations we obtain 

ReK, if 19 > 7r/2 
iImK 

1 if 8 < 7r/2 (5.1) 
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G:,@*, a, 6) - G,,,(w, a, b) 

(5.2) 

with the values of K,(a, b) and K,(a, b) given in Section 4.1. 

6. Asymptotic Behavior 

For the fluid limit ) w ) 4 ) a 1, ) b 1, and arg(w) # --n/2. 

4+;[ma+(n-+)b] 

a2+m (n-+b+f(n-+)(n+;) b2] 

+ . . . (6.1) 

G,,,(o,a,b)- F L ‘+ 
-l/2 

j=O (OJ EO ( ) 
l &‘(-b)’ 

_ 1 +; (a++b) +-$(a’++b+$b’) +a** (6.2) 

G,,,(o, a, b) ‘v F jI 
j=O (OJ 

2 

- 1 +;+;s+ . . . (6.3) 

where (j’) is the usual binomial coeffkient. 

7. Integral Representation of the FLR Dispersion Functions 

The integral representation for the FLR dispersion function GFLR(o, a, b, k) 
defined in Section I(2), 

GFLR(o, a, b, k) = low u du exp(-u2/2) ltrn dv ex$$/2’ 
-co 

X 
c&ku) 

o - $au2 - +bv2 
(7.1) 
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where k = k,( r,/m) “*/a, is 

271 

GFLR(o, a, b, k) = -iw 
I 

00 dt exp(iot) Z, [k*/( 1 + iut)] 

0 (1 + iut)(l + ibt)“* 

I 
e-SZo[k2/(1 -as/o)] 

= CdS (1 -us/w)(l-bS/W)“2 

(7.2) 

(7.3) 

where Z,(z) = e-‘Z,(z) = 72-r st de exp[-z( 1 - cos O)] and C is the contour defined 
in Fig. 1. Note that Z. has an essential singularity at s = w/u. 

A set of finite-Larmor radius dispersion functions is defined as 

G;LR(~, a, b, k) = zlrn dx jom dyy-1’2 exp(-x - Y> 

d 
Fi(x9 Y7 k, (7.4) 

n 0 w-ax-by 

where we take 

Fi(x9 Y, k, = 

J;(W i= 1’ 

J:Vd i=2 

$0 W J, (kq), i=3 

(x + Y) J;(k), i=4 

(x + Y> J:W, i=5 

(x + Y> + Jo(kq) J,(kq), i=6 

(7.5) 

with q = (2x) ‘I*. The first function, GrLR, is the GFLR in Eq. (7.1). The integral 
representations for GrLR are obtained from Eq. (7.3). For example, the representation 
for GILR is obtained from (7.3) by replacing Z,(z) by Z,(z) = e-‘Z,(z), where Z,(z) is 
the modified Bessel function. 

From Eq. (7.5) we see that 

FLR 
G3 

’ a GFLR =--- 

2k LJk ’ (7.6) 

and 
FLR 

G6 
1 a =--- 

2k L’k 
G: LR. (7.7) 

With Eq. (7.6) we immediately obtain the integral representation 

FLR _ 
G, - 

ds epSITo(z) -T,(z)] 
(1 - us/w)‘(l - bs/w)“* (7.8) 

with z = k’/(l - us/w). 
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For GfLR, if we write (x +v) in Eq. (7.5) as 

x+y= [co-(co-ux-by)+@-b)y]/a, (7.9) 

then the integral separates into three terms, 

FLR G4 = ; [GyLR,- T,(k’)] 

a-b w * m 
+ a\/;; o dx o I I dyy 

,,* exp(-x - Y) JiXWW 
w-ax-by 

= f [I$“” a-b 
- c3(k2)1 + + 

ds e -“I-&) 

c(1-us)(l~bs)3’*’ (‘*lo) 

again with z = k*/(l - as/o). Similarly, we have 

FLR 
G5 = f [GFLR - T,(k*)] 

a-b 
+ I 

ds e-‘T, (z) 
2a c (1 - a+~)( 1 - bs/o)3’2 ’ 

(7.11) 

We obtain the representation of the sixth FLR dispersion function from Eq. (7.7), 

FLR G6 = f [GyLR - row21 + W2)1 

a-b 
+ 2a 

ds P[T,,(z) -I-,(z)] 
(1 - as/o)‘(l - bs/w)3’2 * 

(7.12) 

When Im(o) > 0, the integration contour for these functions can be taken along 
the real axis from zero to infinity. If w is in the lower half-plane, the contour must be 
deformed to remain below the singularities. 

Alernatively, these functions may be generated by expanding r, and 
T,(k*,‘(l - as/o)). This yields a power series in k* with coefficients related to the 
non-FLR guiding-center functions G,+, and G,,,. Thus, 

G FLR = 2 (k2)2icjGZj+1,1 - -? (k2)2j+‘djG2j+2,1 
i=O ,EJ 

(7.13) 

G FLR = ; [GyLR - I-,(k*)] 

+ &$ [ 2 (k2)*jCjG2j+l,2 - 2 (k2)*“‘d,G2j+2,2] 
j=O j=O 

(7.14) 
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where 

,yo 4’(i!)*(2j - 2i + l)! ’ 

(7.15) 

(7.16) 

The Gnz,, may be obtained using the algorithm described in Section III(l) and the 
recursion relations (2.3~(2.6). With o, a, and b of order unity, and k < 1.5, the sums 
(7.13~(7.14) converge to a part in lo4 after 30 or fewer terms (j< 14). With larger 
k, one is limited by the loss of precision in G,,, for large m. 

III. NUMERICAL ALGORITHMS FOR THE GUIDING-CENTER 
DISPERSION FUNCTION 

1. Evaluaton of G,,,,(w, a, 6) from Integral and 
Differential Representations 

A FORTRAN function subprogram, GCDF, has been written to generate the first 
none guiding-center dispersion functions, G,,,(o, a, b), for m and n running from 0 
to 2. The functions are evaluated either from the integral formula, Eq. (1.3.1), or from 
the differential representation, Eqs. (2.1), (2.2), (2.7). The choice depends on the 
complex frequency w. First, for o nonzero, the parameters o, a, and b are 
transformed using the homogeneity property (1.4. l), 

(w a, b) -+ k/r, a/r, V-1 
r = Abs(w) 

so that o lies on the unit circle. In the following discussion, w, a, and b refer to these 
resealed values. 

It should be noted that if a, b, and (a - b) are nonzero then all the G,,,, for 
arbitrary m and n, can be obtained from Go,, and G,,, using the recursion relations 
(2.3~(2.7). However, these relations include terms such as (G,, I,n - G,,,)/a. When 
parameter a is near zero the dominant part of G,, ,,” - G,,, is linear in a/w, and 
serious numerical errors will result from the finite precision arithmetic. Various 
small-a expansions can be derived for such cases, but these are not satisfactory if w 
happens to be near the negative imaginary axis. There, low-order expansions cannot 
reproduce the term exp(-w/a) in Eq. (4.1.1). Similar errors occur when b or (a - b) 
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is near zero. For these reasons the recursion relations have been avoided in the 
GCDF subprogram; all the G,,, (except G,,,) are obtained by integrating Eq. (1.3.1) 
or Eqs. (2.1) and (2.2). 

There are singularities in the integrand of Eq. (1.3.1) at s, = w/a and s, = w/b. If 
the real parts of both s, and s, are negative then this integral correctly gives the 
guiding-center functions for any Imag(o). If either s, or s2 has a positive real part 
then Eq. (1.3.1) applies only jf Imag(w) is positive. In the latter case the program 
uses this integral representation only when Imag(o) > 0.4. This pushes the singular 
points away from the real axis, making it easier to obtain a numerical solution. The 
set of subroutines, GCINIT, GCSIMP, and GINTGR, performs the integrations by 
the Simpson method on all the G,,, simultaneously. GCINIT divides the range of 
integration into six subintervals. If parameter u or b is large, one of the singularities 
will be close to the origin. The widths of the first two subintervals then are taken 
inversely proportional to la 1 or 1 b) to cover the region where the integrand varies 
fastest. 

In all other cases, Imag(o) < 0.4 and Real(s,) or Real(s,) positive, the system of 
differential equations (2.1), (2.2), (2.7) must be solved. The initial conditions are 
established at the point w,, = (Real(w), OS), calling GCINIT to evaluate the 

The differential system is approximated by the implicit finite-difference equations 

and similar expressions for the other G,,,. Rearranging terms yields 

(gi+ 1) 
0.1 = G6’,), b 

b+dco 

The integration contour is taken to be the straight line from w. to w so that dw is 
purely imaginary. Then the factors a/(a + do) and b/(b + dw) have magnitude less 
than one for all real a and b. With this choice the algorithm is stable if dw/w is small 
everywhere on the contour. This requires ldwl < JReal(w)[. 

It can be shown that if a and b approach zero with dw held fixed, the above 
expressions go to the correct asymptotic limits as given in Section II(6). Thus, the 
step size can be chosen independently of a and b as long as IReal( is not too small 
(o not too near the branch cut). 



275 GUIDING-CENTER DISPERSION FUNCTION 

2. Software Documentation 

The FORTRAN code for the guiding-center dispersion function is available on the 
MFE network. It may be copied from FILEM, user number 014545, file GCDFIFS. 
This file contains the complex function GCDF and its subroutines GCINIT, 
GCSIMP, and GINTGR. Documentation and an example also are included. 

3. Graphs of G(o, a, b) versus Real(w) 
for Various a, b, and Imag(w) 

20- 

I o- 

o- 

O- 

-0.5 - 

-l.O- 

-1.5- 
-10 

GCDF(m=l,n=I) 
1 / 

a=I 
b=l 

1 
1 

: ,’ 
( IV, 

-5 0 5 

FIG. 4. Graph of the real and imaginary parts of G(w, a, 6) as a function of w, = Real(o) for 
a = b = 1 and wi = Imag(o) = O., 0.5, and 1.0. 
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and b = -1 with wi = O., 0.5, and 1.0. 
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FIG. 6. Graph of the real and imaginary parts of G(w, a = 1, b = 1) for q = -1. The discontinuity 

at w, = 0 arises from the branch line shown in Fig. 2. 
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tinuity at w, = 0 arises from the branch line shown in Fig. 2. 
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